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The plane problem of stress concentration near a thin absolutely rigid inclusion is considered. Under the action of a force 
and a moment, applied to the upper edge of the inclusion, which is completely bonded to an elastic medium, the lower edge 
of the inclusion separates into layers: a crack opens in a certain inner section and finite slippage zones occur outside it. The 
problem is equivalent to a system of four singular integral equations in different sections. In the symmetric case, the reduction 
of this system to a single :fingular integral equation of the Mellin-convolutinn type in the interval (it, 1) turns out to be effective, 
as the latter equation can be solved using a previously proposed scheme [I] as a consequence of the smallness of Ix. In the 
general case, the system is reduced to two Riemann vector problems which are solved successively and for which analytic and 
asymptotic solutions are constructed. The zones of sfippage and detachment, the angle of rotation of the inclnsion, the normal 
displacements of the Iowex edge of the inclusion and the contact stresses in the slippage zone are found. Copyright O 1996 Elsevier 
Science Ltd. 

A fundamenta l  mixed p rob lem for  a crack, that  is, the problem of  the separat ion o f  a layer f rom an 
inclusion, has been  solved earlier in [2-5] wi thout  introducing slippage zones in the ne ighbourhood  of  
the inclusion ends. F,ven in the case of  a homogeneous  medium, this formulation leads to the non-physical 
oscillations back and forth o f  the edges of  a crack in the ne ighbourhood of  its vertices. A similar situation 
arises [6] in the problem o f  an interface crack and this was overcome in [7] by introducing slippage 
zones. A n  oscillating singularity in the case o f  stresses and displacements  in the ne ighbourhood  o f  the 
ends does no t  arise [8] in the antiplane problem for delaminated inclusion. A n  exact solution o f  the 
plane problem of  co ntact between an inclusion and elastic material, when there are delamination sections 
and no account  is taken of  shear  stresses, has been constructed in [9]. 

1. D E L A M I N A T I O N  U N D E R  T H E  A C T I O N  O F  A C E N T R A L L Y  
A P P L I E D  V E R T I C A L  F O R C E  

There  is an absolutely rigid inclusion ( -a  ~< x ~< a, y = __0) in a homogeneous  elastic plane and a 
vertical force P is applied at the point  x = 0 to the upper  edge o f  the inclusion which is bonded  to the 
med ium 

u = O ,  u = O ,  - a < ~ x < ~ a .  y = + O  (1.1) 

The  lower edge of  the inclusion peels off. The  median segment  (-b,  b) o f  the crack ( -a  < x < a, 
y = 4 ) )  opened  under  the act ion o f  the force P 

or=0, x ry=O, -b<x<b, y=-O (1.2) 

and the conditions of fdctionless slippage 

x,:.=0, u =0, b<lxl<a, y=-0 (1.3) 

are satisfied in the end sections (-a, --b), (b, a). 
The position of point b is determined when solving the problem from the condition for the smooth 

joining of  the  lower edge o f  the crack 

~ul3x(x,  - O) -~  O, x ~ +b-T-O 
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It follows that one should accept as being physically correct that solution which eliminates tensile contact 
stresses in the slippage zone and the oscillations back and forth of crack edges in the separation zone 

oy(x,- -0)~0,  b < l x l < a ;  u(x.-0) -< 0, - b < x < b  (1.4) 

We introduce the discontinuities 

Z~(x) = (o:,), X2(x) = (%,>, 

((f) = f l:,=-o -fly=+o) 

X4(x) = \ a x l  

and express the contact stresses and the tangential derivatives of the displacements on the line y = 0 
in terms of them 

2X+Oy (x,--O) = X+gl (x) - x-rag2 (x) - rt, g4 (x) 

2x+x~ (x,-0) = x-r.z~ (x) + x÷x~ (x) - r.z~ ix) 

4Gx+au / ax(x, +o) = x r a x  2 (x) - x+x3 (x) - x-rbz 4 (x) 
(1.5) 

4Gx*ao / ax(x, +0) = ×r ,x  I (x) + ×-r~x 3 (x) - ×+x4 (x) 

× = 3 - 4 v ,  x ± = × + l  1 !{ x(~) 
--7' 

On satisfying conditions (1.1)--(1.3), we arrive at the system of four singular integral equations 

x+Xl (x) - x - r ,  X2 (x) - rbz 4 (x) = o, 

×-rag  t (x) + x+X2(x)- Fox3 (x) = o, 

×FAX2 (x ) -  x+~3 (x) -  ×-rbT~4 (x) = 0, 

Xra~ 1 (x)+ x-l'aX 3 (x) - x+X4 (x) = 0, 

- b < x < b  (1.6) 

- a < x < a  (1.7) 

- a < x < a  (1.8) 

- a < x < a  (1.9) 

with the supplementary conditions for the closure of the slit and the equilibrium of the inclusion 

X3(x)dx = 0, Zl(x)dx = P (1.10) 
- - td  - a  

(the remaining conditions are automatically satisfied by virtue of the evenness of Zl(x) and the oddness 
of Z2(x), X4(x)). On expressing the functions FoXI(x) and Fax3(x) from Eqs (1.7) and (1.9) and applying 
the operator Fa in a class of functions with integrable singularities at the endsx = __. a, we find 

Xl(x) = 

X3(x) = 

(a 2_x2)~  C o + - S  (a2-~2)~  x- 1 

1 [ 1 a ( a 2 - ~ : ) ~ I  × ×- 1 ] (a 2 _x2) ~ C, +~:.  ~-x ~-X2(~)+-~-X4(F~) d~ 

(1.11) 

On satisfying the supplementary conditions (1.10), we have C1 = O, Co = _/~-1 and, on substituting 
expressions (1.11) into Eqs (1.6) and (1.8) and taking into account the oddness of the functions ~2 and 
~ ,  after the change of variables ~ = a~l, x = ax I we obtain 

o L J ,, o L j 
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O < x < ~,o, Xo = bla  

-'iPl ¢'--" + 
-o L +tl-.;) J 
0 < x < l  

(1.12) 

Analysis of the Cauchy-type integrals in (1.6)--(1.9), as well as the condition for the smoothness of 
the profile of the slit at the points x = +b, leads to the following class of solutions 

X2(~)=O(F~), ~---~+0; X2(F~)=Oi(a-~)-~}, ~ - t a - O  

Z4(~)=O(~), ~---)+0; y,,4(~)=O{(b-,~)~}, ~---)b-O 

We now introduce the new functions 

~Ol(q) = 2fIX2 (a(L- q2)H), 

and simplify system (1.12) to the form 

x--j~ o %(rl)rl+y drl + I! ~02 (1])rl-y drl= ---' Px+na ~.<y<l 

;!1 ' a~ x - j  ~2(q) 
qh(q) + _ _  d~=0,  0 < y < l  
~-y nx x rl+y 

where k = (1 - ~.20)tr2 and the functions %, 92 have the asymptotic forms 

~o2 ('0) = 2"GX4 (a(I - rl 2 )H ) (1.13) 

(1.14) 

q)i(rl)=O{(l-q)Y~}, n---)l-O; q)i('q)=O(rl-Y2), n - ~ + o  (1.15) 

q~2(rl)=O{(l-q)~}, r l " ~ l - 0 ;  q~2(~)=O{(rl-~)~}, rl--);Z+0 

We express the function qh('q) from the second equation of (1.14), taking account of (1.15), as 

x - ( l - r l Y ~ ' (  ~ ~Y2q~2(~)d~ (1.16) 

This last relation is substituted into the first equation of (1.14) and use is made of the equality 

~ - ~ ( I - ~ ) ~ d ~  I 1 ( 2y 1~ 
~'! (F~+y)({+rl) 'q-y t - 7 '  ~= , t = t ~ + y  ) , 0<11, y<l (1.17) 

As a result, we arrive at an integral equation which, after introducing the variables % t and the 
functions 

"+a /'2 ) 
~(~) =-p~(2-x2j ~2 ~ (1.18) 

reduces to an equation of the Mellin-convolution type 

-~ t~_~2~- d'~=t2--"-" ~, l J'<'<l, lJ. (2~, "~ - ~, I + Z, J ' Y = ×+ (1.19) 

We extend this equation along the positive half-axis 



668 Yu. A. Antipov 

27(p.(x ) I -Y  2x/t dx.=f . ( t )+(p_( t )+%(t )  ' 
~o  ( t /~ )  2 -1  

_ f(t2 - 2 )  -I , 0 < t < l  ~,(O_fcP(t),  
fo(t) - [0, t > 1 ' -LO, 

0 < t < ~  

B < t < l  
t ~(~t , l)  

(1.2o) 

suppqL(t) c [0,bt], supp~+(t) c [! ,~) 

and introduce the Mellin transforms 

I l i b  

@~(s) = ~(p(t)tSdt, O~(s)= ~ (pGtt)t"dt 
i~ i 

i 
02(s) = ftp_(Bx)x"dz, O~(s) = ~(p+(x)x"dx 

0 I 

I ,is ~ I 

F - ( s ) =  [ x-i-~_2d*=-)=~o 2 j + t ( s + 2 j + l ) ,  
0 

Re(s) > - I  

The application of a Mellin tl:ansform to Eq, (1.20) leads to the following Riemann vector problem 

O~'(s) = la- ' -~O?(s)  

O~ (s) = (tg ~2 ns + y2 ctg ~ ns)O~ (s) - B - " - l ~  (s) - F-  (s) 

s ~ F: Re(s) = Y0 e (0,1) 

The solution of this problem is constructed using a scheme which has been described previously [1]. 
We shall only present the final formulae 

i 

O?(s)=[K-(s)]-Ix(s)+B"+l[K+(s)l-lU/-(s), ~ ( s ) =  K-(s)W-(s) (1.21) 

" 2 - / - I  Y ( s )  = ~ + ( s ) -  " 2-J-I 

K+(s)= ( I -y2)F( I - s l2 )F(~  - s / 2 )  
F ( l - s l  2- i~12)F(1-s /  2 + i~ / 2) ' 

V+(s)=  ,~, A; V-(s )  = ,~, A; 
j== s - s j  )=~ $ + s j - 2 '  

s2y_j =i~+ 2j, s2j=-i~+2 j 

K - ( s )  = 
r ( s  / 2 )F(~  + s / 2) 

F(sl2+i~12)F(sl2-i~12) 

~ = / l n  l + y  = In× 
r~ 1 - y  2n 

The coefficients A ~ are the solution of the infinite algebraic system 

(1.22) 

-~. .~'m + 1 _ _  a . = .  A/ 
j=l sm +sj  - 2  

A,~ =p.sm-3A+,n f,n+i~=l 2-sm-sJ  

+ i - '~2[F(m+i~ /2 ) r (m-~+i~ /2 ) ]  2, 
A2"-~=- n r(m)r(m+i~) 

(m-~+i~12)  2 
AD'-I = (1_ y2)2 A~' - I '  A2,n = A2m-i 

= A2m_ I 

(1.23) 
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j~=o IU(~+i~/2+j)12 
f" = l--ty "--'-T 2J+tV(~+j)j!(s,.-3-2j) 

In order that ~(~) = O{(b - ~)~}, ~ ~ b - 0 or ,  what is equivalent, q)(x) = O{(x - It)u2}, x --> It + O, 
it is necessary and sldfieient that the quantity It should be a root of the following equation 

A; =o (1.24) 
j=O 

Then 

b = 2a(2 - p.2)-I (1 _ ~2))~ 

A numerical analysis of the solution of system (1.23) shows that, as in the problem of an interface 
crack [1], Eq. (1.24) can only have a root among the values of It which are close to zero. In order to 
analyse the solutiorL of the system for small It, we transform system (1.23) in terms of the recurrence 
relations 

+. (1.25) 
k=l 

a , ~ :  j . l  ~, s.. + s2 j - j  - 2 + s= + s2j - 2 ) 

n+=n ,  n _ = n + l ;  n= l .2  .... ; re= l , 2  .... 

On substituting formulae (1.25) into Eq. (1.24), we obtain 

~2~ai- I + a~l + 0(I~ 2) = O. ~ ~ 0 

from which we find the following asymptotic formula 

4exp l_ .~ l  atetg 2qq _ : f k + l ~ l +  0,1,2 .... ItJ~= L Lp ~ p~, z / j  °( i t2) '  t =  

qt÷iq2=(l+i~)F(~+~12, ~- i~12;  ~; ~), Im(ql,q2)=O 

The values of the first few roots for some values of v are presented below 

v 10 -6 0.1 O.3 0.45 
0.212 x 10 -1 0.107 x 10 -I 0.417 x 10- 5 0.321 x 10 -.1 

~tl 0.266 x 10 -5 0.350 x 10 ~ 0.212 x 10 -1° 0.993 X 10 -35 

It2 0.333 x 10- 0 0.114 × 10-10 0.108 × 10 -17 0.307 x 10- ~ 

It now remains 1:o verify that the solution obtained is correct, that is, to verify the practicability of 
conditions (1.4). Let  us determine the jump in the normal displacements (vXx). By virtue of (1.13) and 
(1.18), we have 

Z4(x)= ~ ( l - x  2 l a2)-)~cp2((l-x 2 l a2))~)= 

n,c+ (a 2 - x2))~[a+(a 2 --X2) ~ ] ~ [1+(1-X 2 l a2)-~]  ~ 

where the functiorL 9(x), which is the solution of Eq. (1.19), is determined from (1.21) using an inverse 
Mellin transform and the theory of residues 
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{~('C)=-l'~"TI~l($)'C-S-ld$=~( A + ' C - s m - 1 2 ~ l  F m=l K-(sm) A~n('clta)s=-3)K'7-~-~ m ) 

Ix < x < 1 (1.26) 

We will now investigate the convergence of series (1.26) at the points x = ~t and x = 1. By virtue of  
(1.22), we have the asymptotic form when s --) oo K+(s) = 0(s-1;2), s e D +, IC (s) = O(sU2), s e D-, D-: 
Re(s) X "/0- When account is taken of  equality (1.24), analysis of  relations (1.23) gives 

A~ = O(m-2Ix s" ), A+= = O(m-Ilff m ), m --) oo 

so that the elements of  series (1.26) behave as m -3/'2 when m ---> **, and this means that 

¢p('t)=O{('t-~t)~J}, x - , I x + 0 ;  ¢p('c)=O{(1-x)~}, x - - - > l - 0  

The displacements of  the lower peeling edge have the form 

1 b 
v ( x , - O )  = - - -=-  f z 4 ( ~ ) ~  

2 G ~  

We now find the contact normal stresses ¢~y(x, --0) in the contact section b < x < a. Taking account 
of  relation (1.5) and relationships (1.11), (1.13), (1.16), (1.18) and (1.20), we obtain 

2/tat 2 _ (2a(1-t2) ~ ] _  1 2 l t ~(p(x) (1 

= ¢p_(t) + ¢p+(t), 0 < t <*,, 

On applying an inverse Mellin transform to the second equation of  (1.21), we arrive at the relations 

O, . (x , -0 )=  Pa _ ([" 2A(x) " ] ~  
ltAtx)ta+A(x)ltP_LL.a-~x) j j ,  b<x<a 

A(x) = (a 2 - X2) ~ 

.=,'r---(-~m)t,'ff ) L I r ( l -m+i f~ /2) l  2 t I r (~ -m+ i f~ /2 ) l  2 ] 

(1.27) 

Analysis of  these formulae shows that the contact stresses increase monotonically in the neighbour- 
hood of  the pointx  = a and, moreover,  that 

oy(x,--O)=O{(a-x)-~}, x->a-O; oy(x,-O)=O{(x-b)Z2}, x---)b+O 

The calculations lead to the conclusion that the stresses and displacements satisfy only conditions 
(1.4) in the case of the root ~ (the largest among the roots of  (1.24)). 

The results of  the calculation presented below 

v 0 0.1 0.2 0.3 0.4 0.45 
St 0.212 x 10 -1 0.107 × 10 -1 0.356 × 10 -2 0.417 × 10 -3 0.782 x 10-6 0.321 × 10-"  
~. 0.225 x 10 -3 0.575 x 10 -4 0.633 x 10 -5 0.867 × 10 -7 0.306 x 10 -12 0.515 x 10 -23 
l/a 0.252 x 10 -7 0.165 x 10 -8 0.201 x 10 -l° 0.376 x 10 -14 0.468 × 10 -25 0.133 × 10 - ~  

show that the length of the contact l = a - b is a maximum when v = 0 and decreases to zero as Poisson's 
ratio increases up to v = 0.5. 

A graph of  the displacements -2Gv(x, --O)/P in the separation zone 0 < x < b for v = 0.3 is shown 
in Fig. 1. Note that the derivative with respect to x of  the function v(x, --0) vanishes at the point x = b. 
Plots of  the dependence of the function ~0*__3(x ) = -10-2(p_(x)on x = 10-zx0 for the case when v = 0.1 
(curve 1) and of  the function 9*_(x) = -10-  ~p_(x) on x = 10-°Xo for v = 0.3 (curve 2) are also shown. 
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In both cases 0 ~< x :~ Ix. The normal stresses are connected with the function 9_(x) by relation (1.27). 
It can be seen from the graphs in Fig. 1 that the solution satisfies the correctness conditions (1.4). 
Compressive contact stresses arise in the small segments where slippage occurs (with a length of less 
than 2.5 x 10-~a). These stresses are equal to zero at the point x = b and tend to infinity monotonically 
as x ~ a - 0. The stresses x ~ a + 0 are bounded when a y(x, 0). This fact follows from an analysis of 
the behaviour of the function ~+2(s) when s ~ ~,  s ~ D + and theorems of the Abel type. 

2. AN I N C L U S I O N  IN T H E  CASE OF A S Y M M E T R I C  L O A D I N G  

Let a vertical force P, a horizontal force T and a moment M be applied to an absolutely rigid inclusion 
(0 ~<x ~< 1,y = ___0) at the pointx = 1/2,y = +0 (Fig. 2). The upper edge of the inclusion is completely 
bonded while the lower edge peels off as a layer and, moreover, the segment which has peeled off is 
subdivided into three intervals: two slippage zones (0, bl) and (b2, a) and a single separation zone 
(bl, b2) 

u(x,+O)=O, v(x,+O)=Tx , O < x < l  

Oy(x,-O)=O, b l < x < b 2 ;  x~(x,-O)=O, 

o (x , -0 )=Tx ,  0 < x < b l ,  b2<x<a 
0 < x < 1 (2.1) 

where 7 is the turn angle of the inclusion. 
Using representations (1.5) and boundary conditions (2.1), we arrive at the system of singular integral 

equations 

x+Xl (x) - ×-rx2(x )- rx4(x) = o, bl < x < b2 

×-rXh (x)+ ×+X:2(x)- rX;3(x) = O, 0 < x < I 

xr~2(x)-~+~3(x)-x-r~4(x)--o, o<x <l 

×rXl (x) + x-rX3(x )- x+X4(x) = 4C, x+7, 0 < x < I 

l~ Z(~) ~, 
FZ(x)=-~! ~--~aq suppx4(x)ctb,,b2] 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The solution of this system completely satisfies the following supplementary conditions for the closure 
of the slit and the equilibrium of the inclusion 

~.'(t) 

\ 
\ 

05 

-2GffJv(x/a,-O) 
G 

Fig. 1. 
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Fig. 2. 

I 

fX3(x)dx = 0, 7X4(x)dx = 0, 
o 

I I I 

J 'z=(x)dx = P, j ' Z2 ( x )dx  = -T, J 'X l ( x ) xdx  = M (2.6) 
0 0 0 

Without loss of generality, we will assume that the left-hand zone where slippage occurs is smaller, 
that is, bl '~ b2. The points b 1 and b 2 are determined when solving the problem from the smoothness 
conditions 

X4(x)~0 ,  x--*bl+0; X4(x)~0,  x--~b2-O 

We now express FXl(x ) from Eq. (2.5), substitute into (2.3) and then introduce the functions q)2(x), 

X2(x)=¢2(x)-(x+/x~3(x), X~(X)=-(x/x+)O2(x)-,3(x) (2.7) 

Equations (2.3) and (2.4) then become 

(i+F)(P2(x)+(2x)-tx-(l-F)X4(x)=-¥., 0 < x <  1 

( l -F)qo3(x) - (2x+)- tx- ( l+  I')x4(x) = (x+) -I xy.,  0 < x < i 

7. = 2G(x- / x)¥ 

where I is the identity operator. We extend the definition of the last two equations to values ofx > 1 
using the functions ~+(x) and q~+(x), respectively, and apply a Mellin transform. We now have 

c+ (s)O~ (s) + x- (2x) -I b~+tc_ (s)O 4 (s) = -y. (s + I) -I + O 5 (s) (2.8) 

c_(s)O~(s)- ×- (2x +)-I b~+Ic+ (s)O~(s) = x[x+(s + I)] -I 7. + O~(s), - ~ < Re(s) < 0 
I 

o~,(s)=f%.(x)x'dx, O~(s)=~cpm+(x)x'dx (m=2,3) 
o I 

I 

O4(s) = ~ z4(b2x)x'dx, c±(s)=ctgr~s+l 

We factorize the functions c±(s) and construct a solution of problem (2.8) without using Cauchy- 
type integrals and assuming that the function ~(s) is temporarily known 

• ; ( s )  = K~(s)Y.=(s)+ Y--~* O~(s) = Xt(s) x-b~+t~4(s) (2.9) 
s+l' Ko(s) 2xc tgn(s -  ~ )  

xy. 
~; (S)=  K~(s)T.2(s ) x+(s+! ) ([)3(s)= ~E:~(s) + 

' K~-(s) 2x+ tgTt(s-~) 

X.(s) = Cm + ~F+(s) + (-l)my'em 
$+I 

, ( s )  = ( m  = 1, 2 )  
k=J s - k + m / 2 - ¼  
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K. + (s) = (-1) "-* 2 ~4 F ( - s ) [ r ( ~  - n  / 2 - s)l -* , el = [Kg ( -DI  -~ 

K~ (s) = F(1 + s)[F(}4 + n / 2 + s)] -* (n = 0,1); e2 -- x[x+K~ (-1)l -~ 

where A,o, are coefficients which are subsequently to be determined from the conditions that the 
functions O~(s) and O](s) should be analytic at the points s = k - 1/4 and s = k - 3/4 (k = 1, 2 . . . .  ), 
respectively, and C1 and (72 are arbitrary constants. 

Taking account of (2.7), we now transform the remaining two equations of (2.2) and (2.5) to the form 

x+X~_ ( x ) -  x -F .%_ (x) + x+x - / xr.~o3_ ( x ) -  I'.X,_ (x) = X0_ (x) + X0+(x) 

r.X I_ ( x ) -  x-  / X+roq02_ ( x ) - x -  / xr.q) 3_ ( x ) -  x + / xX~_ (x) = 

= 2(x + / x - ) y . y _ ( x ) +  X~+(x) 

0 < x < ** (2.10) 

supl:'Xo-(X)clO, b|], suppXo+(X)~[b~,**), suppxj+(x)c[ l ,**)  

Ilxt-(x), ~2_(x), ~3_(x), V_(x)ll= 

F'X(x) = l  i X(~)a~-x 

Ilxl,q~2,q~3,111, 0 < x < l  

IIO, O,O, OIL x > l  

On denoting the Mellin transforms with a weight x s of the functions Xo-(bt, x), Xt-(x), Xo+(b~x) and 
Xl+(x) by 03(s), ~i(s),  ~ ( s )  and @~(s), respectively, and taking account of relation (2.9), the system 
of integral equatic.ns (2.10) is reduced to the three functional equations 

¢1'/(s) - x-  [x+Kff (s)] -j Y-j (s) - x - [xK / (s)] -t 5". 2 (s) + b~+th(s)*~ (s) = 

= tg ns{~ ' ( s )  + 2x*y. [~- (s  + 1)1 -t } 

g(s )~] ( s )  + (b I I b 2 )"+] q~o(S) = - * ~ ( s )  + b2S-zfl(s) (2.11) 

• o (s) = -(b z / b 2 )-'-] Ig(s)O 4 (s) + O~ (s)] +/~-'-tf2(s) 

£1(s)=x + tg~s[O~(s)+ 2×+Y: ] 
x - ( s + l ) J  

x-c_O) Xl (s)+ ,t*x-c+ (s) X2 
Kff (s) xK~- (s) (s) 

g(s) = 
2xcos41ts + x 2 +1 

x sin 4ns 

A solution of the Riemann vector equation (2.11) is constructed using the scheme which has been 
proposed earlier Ii1]. Its solution is determined apart from an arbitrary constant C3. The constants Ct, 
C2 and C3 are found from the first, third and fourth conditions of (2.6). From the remaining two 
conditions we obtain the following formula for the turn angle of the inclusion y = (2Gx-)-txy. 

v. = ,,+0,- ¼)(t- ~) + ;,(k-3A){k-7/4) + (t,-½×k- 3/2)j- 

-2P- (x- / x +)T + 4M}4x+x-n -; [2x + (x+)2 ]-i, FI = F(~), F 0 = F(3/4) 

and the following transcendental equation for determining the point b2 

b ~ O  (2.12) 
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+ -k----¢-~ + ~" A2t~ 
C, =¥,e , -2T i  + = f~A-I-~'ll/4' 6"2 =-Y'e2 2x F 0 k=, f~--~ 

IIn~,,o,~,~,,~ II(t) = ~ '-2 ",,0 1 1 

_ x+x-r(n - ¼)1 l-'(2n + i~)12 h~. = x-l"(n- ~)1 r ( 2 n  - l + i~)12 h2" = 

~t2 ~ F(n)F(2n-  ~ ) F ( 2 n -  1)' gx2 ~ F(n)F(2n-  ~)F(2n) 

where 13 = (2n)-qn x. As a consequence of the fact that bl "~ b2 (the quantity bl is smaller than the 
length of the slippage zone found in Section 1 in the symmetric case), the coefficients A.u, satisfy the 
following infinite system 

Amn =Ot~b~-~"+~ { f, nn + ~=l [El~(Lm)Alk + E2knC~',n - 2  )A2k + 

+(n+k-k.+~)-'A,lk]} (m = 1,2,3) 

] (,,=1.2 ) A4. =xlx3.b; -~ f4. +k~ (n+'-k--l)"~'--k+~)J 

where the following notation has been adopted 

k l = l ,  ~ .2=~,  k3=5//4, E/~(t)=-rljkn(t)+(k-jl2+~)-lO)n(t) 

f ~  = F.(~..,,~.,. -~2) (m= 1,2,3); f4. =Y.e3(-n+~)(n-~) -I -rc-~P 

F. (p, q) = ~ T[--FIHOl. (p) + (× / ×+ )Fol02n (q)] + 

+T. {el [Ol. (P) + ~ .  (P)] - e2 [02. (q) + ~2. (q)]} 

F(n + ~ -  ~.,.)1F(2n + 2 -  2~.., + i[3)12 la,, x- 
ct,,~= gF(n)F(2n+2-2k,.)F(2n+~-2Z,,.) ' ~ t l = - ~ x '  ~ t 2 = - - -  

- + 

2× + ' I't3 = x 

The length of the smaller slippage zone is sought from the condition for the profile of the slit to be 
smooth in the neighbourhood of the point x = bl. Using asymptotic analysis and allowing for the 
smallness of the quantity bl, we find 

l 2RIR 2 2~{ 1)]  
b~ = b 2 e x p ~ - ~ a r c t g ~ - y ~ m + ' ~ . J ; ,  m=0,1 .... 

R=R!+iR2= F I 2 +  3 + i ~ ) +  
' 2  2)  

(2.13) 

As in Section 1, from all of the lengths bl "~ b2, we choose the longest, that is, the length which 
corresponds to the case when m = 0. 

The solution of problems (2.8) and (2.11) for values of the quantities bl and b2, which satisfy Eq. 
(2.12) and relation (2.13), generates a solution of system (2.2)-(2.5) possessing the properties 

Xj(x)=O(x-~), x--~0; gj(x)=O{(l-x)-~}, x---~l ( j=1,2,3)  

X~(x)=O{(x-b~)~}, x ~bl; Z4(x)=O{(b2-x)Y2}, x ~b2 



A delaminated inclusion in the case of adhesion and slippage 675 

Numerical calculations were carried out for v = 0.3 and T = 0. We present the values of p - l b  2 (1 - 
bz--the length of the larger slippage zone) and 2CryP q (y is the turn angle of the inclusion) when M = 
-Pe for several values of the eccentricity e (when -1 ~ e < -1/2 it is assumed that a pair of forces P 
and -P  with an ecc~mtricity e/2 is applied to the inclusion) 

• - I  -0.8 -0.6 -0.5 -0.4 -0.3 -0.1 
P-ib, 2 0.835 0.848 0.865 0,876 0.890 0.906 0.954 
2GP -1 y -3. ! 7 -2.76 -2.35 -2.15 - 1.95 - 1.74 - 1.33 

If, however, P = 0, then only the magnitude of the turn angle changes when there is a change in M 
and the lengths of the slippage zones for fixed v do not vary. The greatest length of the right-hand slippage 
zone occurs when v = 0:b2 = 0.7438. Values of the turn angle of the inclusion are presented below for 
some values of the moment M 

M -100 -10  -5  - 2  -1 -0,5 -0.1 
2Co' -203 -20.3 -10.2 --4.07 -2.03 -I .02 -0.203 

It can be seen that the turn angle is a linear function of the moment (when P = 0). 
This research was carried out with support from the International Association for Cooperation and 

Collaboration with Scientists from the Independent States of the former Soviet Union (INTAS-93-2600). 
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